Open Access Highly Accessed Open Badges Research

An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish

Jean-Lou Justine1*, Ian Beveridge2, Geoffrey A Boxshall3, Rodney A Bray3, Terrence L Miller4, František Moravec5, Jean-Paul Trilles6 and Ian D Whittington7

Author Affiliations

1 UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, Case postale 51, 55, rue Buffon, 75231 Paris cedex 05, France

2 Department of Veterinary Science, University of Melbourne, Veterinary Clinical Centre, Werribee, 3030, Victoria, Australia

3 Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK

4 Biodiversity Program, Queensland Museum, PO Box 3300, South Brisbane, Queensland, 4101, Australia

5 Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská, 31 370 05, České Budějovice, Czech Republic

6 Équipe Adaptation écophysiologique et Ontogenèse, UMR 5119 (CNRS-UM2-IRD-UM1-IFREMER), Université Montpellier 2, Place Eugène Bataillon, 34095, Montpellier cedex 05, France

7 Monogenean Research Laboratory, The South Australian Museum, Adelaide 5000, & Marine Parasitology Laboratory, & Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, North Terrace, Adelaide, 5005, South Australia, Australia

For all author emails, please log on.

Aquatic Biosystems 2012, 8:22  doi:10.1186/2046-9063-8-22

Published: 4 September 2012



Coral reefs are areas of maximum biodiversity, but the parasites of coral reef fishes, and especially their species richness, are not well known. Over an 8-year period, parasites were collected from 24 species of Lutjanidae, Nemipteridae and Caesionidae off New Caledonia, South Pacific.


Host-parasite and parasite-host lists are provided, with a total of 207 host-parasite combinations and 58 parasite species identified at the species level, with 27 new host records. Results are presented for isopods, copepods, monogeneans, digeneans, cestodes and nematodes. When results are restricted to well-sampled reef fish species (sample size > 30), the number of host-parasite combinations is 20–25 per fish species, and the number of parasites identified at the species level is 9–13 per fish species. Lutjanids include reef-associated fish and deeper sea fish from the outer slopes of the coral reef: fish from both milieus were compared. Surprisingly, parasite biodiversity was higher in deeper sea fish than in reef fish (host-parasite combinations: 12.50 vs 10.13, number of species per fish 3.75 vs 3.00); however, we identified four biases which diminish the validity of this comparison. Finally, these results and previously published results allow us to propose a generalization of parasite biodiversity for four major families of reef-associated fishes (Lutjanidae, Nemipteridae, Serranidae and Lethrinidae): well-sampled fish have a mean of 20 host-parasite combinations per fish species, and the number of parasites identified at the species level is 10 per fish species.


Since all precautions have been taken to minimize taxon numbers, it is safe to affirm than the number of fish parasites is at least ten times the number of fish species in coral reefs, for species of similar size or larger than the species in the four families studied; this is a major improvement to our estimate of biodiversity in coral reefs. Our results suggest that extinction of a coral reef fish species would eventually result in the coextinction of at least ten species of parasites.

Biodiversity; Coral reefs; Parasites; Coextinction; Lutjanidae; New Caledonia; South Pacific